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Abstract—In this study, we compare the performance of Prin-
cipal Component Analysis (PCA), Sparse PCA (SPCA), Robust
PCA (RPCA), and Weighted PCA (WPCA) on a high-dimensional
dataset of economic indicators from G20 countries. We evaluate
their effectiveness in retaining variance and enhancing the
performance of K-means clustering. Our comparative analysis
employs metrics including effectiveness of variance retention,
mean variance of distance sample-centroid, mean distance among
centroids, and the rand index for cluster similarity. Our analysis
indicates that PCA exhibits a greater effectiveness compared to
SPCA but is outperformed by RPCA and significantly by WPCA,
which shows the highest variance retention among the four meth-
ods. In terms of clustering, SPCA coupled with K-means achieves
the best balance between cluster compactness and separation, as
indicated by a low mean variance of distance sample-centroid
and a relatively high mean distance among centroids. RPCA,
while exhibiting extremely compact clusters, demonstrates the
least inter-cluster separation. The rand index comparisons reveal
that while PCA, SPCA, and WPCA share similar clustering
structures, RPCA distinguishes itself by detecting unique pat-
terns, contributing to a broader perspective in the analysis of the
high-dimensional datasets. The study provides insightful findings
that emphasize the role of appropriate dimensionality reduction
method selection in enhancing the effectiveness of unsupervised
learning tasks.

Keywords—principal component analysis, clustering, K-means,
classification, data analysis, machine learning

I. INTRODUCTION

In the realm of unsupervised learning, clustering is a funda-
mental technique aimed at grouping similar data points within
an unlabeled dataset, facilitating pattern recognition, and data
exploration [1]. Nevertheless, the high dimensionality of mod-
ern datasets can hinder clustering algorithms from efficiently
identifying meaningful patterns [2]. Addressing this challenge,
dimensionality reduction techniques offer a promising solution

by transforming the original data into a lower-dimensional
space.

Dimensionality reduction is a common technique in ma-
chine learning and data science used to reduce the number
of features in a dataset while preserving as much information
as possible [3]. This can be beneficial for a variety of tasks,
such as improving the performance of machine learning al-
gorithms, making data visualization easier, and reducing the
computational cost of data analysis [4].

One of the most well-known dimensionality reduction tech-
niques is principal component analysis (PCA) [5]. PCA works
by finding a set of orthogonal linear combinations of the orig-
inal variables that account for as much of the variance in the
data as possible [6]. This can be a useful way to summarize the
main features of a dataset and identify relationships between
variables.

However, PCA has some limitations. For example, it is not
robust to outliers, and it can be sensitive to the scale of the
variables [7]. Therefore, over the years, variants of PCA have
been proposed to address these limitations. While PCA is the
most widely known technique [8], the existence of alternative
variants opens up new possibilities for improving clustering
performance.

This research aims to analyze and compare PCA with three
of its variants: sparse PCA (SPCA), robust PCA (RPCA), and
weighted PCA (WPCA), seeking to identify the most suitable
dimensionality reduction approach for optimizing clustering
results. By understanding the strengths and limitations of each
variant, we aim to provide valuable insights for researchers and
practitioners in data analysis and machine learning tasks.

To achieve this, we utilize a dataset comprising economic
indicators of G20 member countries, a diverse group of nations
with significant economic, commercial, and population impact
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worldwide. Following the dimensionality reduction step using
PCA and its variants, we apply the K-means clustering algo-
rithm to form the clusters.

To evaluate the performance of the dimensionality reduction
techniques, we employ metrics such as effectiveness. Addition-
ally, to assess the clustering results, we consider metrics such
as mean variance of distance sample-centroid, mean distance
among centroids, and rand index.

Through this comprehensive analysis, we aim to advance
the state-of-the-art in dimensionality reduction and clustering,
providing valuable insights for researchers and practitioners
in data analysis and machine learning tasks. By understanding
the strengths and limitations of each PCA variant, this research
will aid in making informed decisions when dealing with high-
dimensional datasets, with the ultimate goal of enhancing the
utility of dimensionality reduction techniques in real-world
data analysis.

II. MATERIALS AND METHODS

A. Data set description

The data set used in this study was collected from Trading
Economics1, a website that aggregates millions of economic
indicators from countries worldwide. This platform provides
free access to indicators, historical data, charts, and forecasts.

For this research, our focus was on the G20 member coun-
tries, comprising the world’s largest advanced and emerging
economies. These countries collectively account for approxi-
mately two-thirds of the global population, 85% of the global
gross domestic product, and over 75% of global trade. A total
of 24 countries were analyzed, as G20 events often include
guest members each year. The list of the 24 countries analyzed
is presented in Table I.

TABLE I: G20 member countries. *guest member

Argentina Australia
Brazil Canada
China European Union
France Germany
India Indonesia
Italy Japan
Mexico Netherlands*
Russia Saudi Arabia
Singapore* South Africa
South Korea Spain*
Switzerland* Turkey
United Kingdom United States

We collected 14 economic, social, and trade indicators that
were available from these countries. The data were gathered
from the third quartile of 2022. A detailed description of the
indicators is available in Table II.

The selection of this data set was strategic for our objective.
Given the heterogeneity inherent in data from G20 member
and guest countries, we are presented with diverse scaling,
centrality, and distribution characteristics. This allows us to
rigorously test the robustness and efficacy of the different

1https://tradingeconomics.com/

PCA variants. Likewise, possible noise in the data serve as
an effective and realistic ground for comparison. Moreover,
the inclusion of guest members provides atypical data points,
further testing the versatility and adaptability of the K-means
method under different dimensional reductions.

TABLE II: Description of the economic indicators collected
for the G20 member countries.

Abbreviation Description Unit

gdp Gross domestic product USD Billions
gdp-agr Gross domestic product annual

growth rate
Percentage

gd-gdp Government debt to gross domestic
product

Percentage

ed External debt USD Millions
i Imports USD Millions
e Exports USD Millions
ir Inflation rate Percentage
cpi Consumer price index Points
fi Food inflation Percentage
pp Producer prices Points
ca Current account USD Millions

B. Dimensionality reduction techniques studied

1) Principal component analysis (PCA): is a widely used
statistical procedure that aims to transform a set of correlated
variables into a smaller set of uncorrelated variables, known as
principal components [7], [9]. The goal of PCA is to capture
the maximum amount of variation in the data using a smaller
number of variables [9]. PCA can be used for dimensionality
reduction, data compression, and data visualization [10].

PCA works by finding the eigenvectors and eigenvalues
of the covariance matrix of the data [11]. The eigenvectors
represent the principal components, while the eigenvalues
represent the amount of variance explained by each principal
component. The principal components are ordered by the
amount of variance they explain, with the first principal
component explaining the most variance [12], [13]. Given
a data matrix X with n observations and p variables, the
covariance matrix C of X is calculated as:

C =
1

n− 1
(X − X̄)T (X − X̄)

where X̄ is the mean of X . The eigenvectors and eigenvalues
of the covariance matrix C are calculated as:

Cvi = λivi

where vi is the ith eigenvector and λi is the ith eigenvalue.
The principal components are calculated as:

PCi = Xvi

where PCi is the ith principal component. The amount of
variance explained by each principal component is calculated
as:

λi∑p
j=1 λj

where λi is the ith eigenvalue.

https://tradingeconomics.com/


2) Sparse principal component analysis (SPCA): is a di-
mensionality reduction technique that is designed to be more
robust to noise and outliers than traditional PCA [14]. Sparse
PCA works by adding a sparsity constraint to the PCA
problem, which forces the principal components to be sparse
[15]. This makes sparse PCA more resistant to noise and
outliers, because the noise and outliers are less likely to be
sparse [16].

Sparse PCA can be formulated as a minimization problem,
where the goal is to minimize the reconstruction error subject
to a sparsity constraint [17]. The minimization formulation of
Sparse PCA can be expressed as:

min
vi

{
2n

1
∥X −Xviv

T
i ∥2F + λ∥vi∥1

}
subject to the constraint that |vi|2 = 1, where vi is the ith
principal component, | · |F represents the Frobenius norm,
and | · |1 represents the L1 norm. The first term in the
objective function represents the reconstruction error, while the
second term represents the sparsity constraint. The parameter
λ controls the trade-off between reconstruction error and
sparsity.

3) Robust principal component analysis (RPCA): is a mod-
ification of PCA that works well with respect to grossly
corrupted observations [18]. The goal of RPCA is to separate
low-rank trends from sparse outliers within a data matrix, that
is, to approximate the data matrix as the sum of a low-rank
matrix and a sparse matrix [18], [19]. Given a data matrix M,
RPCA aims to decompose it into two matrices, L and S, such
that:

M = L+ S

where L is a low-rank matrix, and S is a sparse matrix. The
low-rank matrix L captures the underlying structure of the
data, while the sparse matrix S contains the outliers or noise
in the data [20], [21].

The “robust” part of this analysis involves splitting the
original data matrix into a low-rank matrix and a sparse matrix
before performing PCA [21], [22]. RPCA has many real-
life applications, particularly when the data under study can
naturally be modeled as a low-rank plus a sparse contribution.
The decomposition of the data matrix into low-rank and sparse
matrices can be achieved by different approaches, including an
idealized version of RPCA [23], which aims to recover a low-
rank matrix from highly corrupted measurements.

4) Weighted principal component analysis (WPCA): is an
extension of traditional PCA that allows the user to weight the
different features of the data [24]. This can be useful when
some features are more important than others.

In WPCA, the goal is to find a set of principal components
that capture the maximum amount of variance in the data
while considering the weights assigned to each variable [25].
This is achieved by finding the eigenvectors of the weighted
covariance matrix of the data, and then projecting the data onto
the eigenvectors with the largest eigenvalues [24]. The mathe-

matical formulation of Weighted PCA involves modifying the
covariance matrix calculation to incorporate the weights.

Let’s consider a data matrix X with n observations and p
variables. The weighted covariance matrix Cw is calculated
as:

Cw =
1

n− 1
(X − X̄)TW (X − X̄)

where X̄ is the mean of X , and W is a diagonal matrix con-
taining the weights assigned to each variable. The eigenvectors
and eigenvalues of the weighted covariance matrix Cw are then
computed as:

Cwvi = λivi

where vi is the ith eigenvector and λi is the ith eigenvalue.
The principal components are obtained by projecting the data
onto the eigenvectors:

PCi = Xvi

We present a summary of the key characteristics of these
dimensionality reduction techniques in Table III.

C. K-means clustering

K-means is a popular unsupervised machine learning algo-
rithm used for partitioning data into distinct non-overlapping
subgroups or clusters [26]. The algorithm works by iteratively
assigning data points to the nearest cluster center and updating
the cluster centers based on the mean of the assigned data
points [27], [28]. Below are the steps involved in the K-means
clustering algorithm:

1) Choose the number of clusters (k) to be formed.
2) Initialize the cluster centers randomly.
3) Assign each data point to the nearest cluster center based

on the Euclidean distance.
4) Recalculate the cluster centers as the mean of the

assigned data points.
5) Repeat steps 3 and 4 until convergence is achieved.
K-means clustering is widely used in various domains

and applications, including customer segmentation, anomaly
detection, market analysis, and more [29], [30]. It is chosen
as a clustering algorithm due to its simplicity, efficiency,
scalability, versatility, and interpretability. The algorithm is
easy to implement and can handle large datasets with high
dimensionality [31]. It produces clusters that are easy to
interpret and understand, providing insights into the underlying
structure of the data.

D. Performance metrics

1) Effectiveness: quantifies the amount of retained or lost
variance through the Frobenius norm comparison of two
dimensionality reduction methods [32]. For instance, to assess
the effectiveness of the RPCA method relative to PCA, we
employ the following formulation:

e =
∥ L ∥2F − ∥ D ∥2F

∥ X ∥2F



TABLE III: Summary of features of the studied dimensionality reduction techniques

Feature PCA SPCA RPCA WPCA

Number of compo-
nents

Unconstrained Constrained
to be sparse

Constrained
by rank and
sparsity

Constrained
by weights

Robustness to noise
and outliers

Sensitive More robust More robust More robust

Ability to weight fea-
tures

No Yes Yes Yes

where L represents the low-rank matrix generated by the
RPCA method, D represents the matrix formed by the prin-
cipal components generated by PCA, and X represents the
original data matrix.

The range of effectiveness (e) varies between -1 and 1. A
positive e value (e > 0), indicates that the first method under
comparison retains more variance than the second. Conversely,
a negative e value (e < 0), signifies that the second method
retains more variance than the first [32], [33].

2) Mean variance of distance sample-centroid: is a metric
that measures the average distance between each sample and
the centroid of its assigned cluster [34], [35]. A smaller
variance indicates better clustering, as it suggests that the
samples within each cluster are closer to their respective
centroids.

3) Mean distance among centroids: is a metric that mea-
sures the average distance between all the centroids of the
clusters [35]. A larger distance is desired, as it indicates that
the clusters are well-separated and distinct. This metric is
based on the distance between cluster centers [36], which is a
fundamental concept in clustering

4) Rand index: is a widely used metric for evaluating
clustering algorithms. This metric measures the similarity
between two clusterings [35], [37]. It is a measure of the
agreement between the true labels and the predicted labels.
The rand index ranges from 0 to 1, with 0 indicating complete
dissimilarity between the groupings and 1 indicating that they
are the same.

E. Workflow and implementation details

Before being used by the algorithms, the data was analyzed
and preprocessed. The first step was to verify whether the
data is suitable for applying multivariate statistical analysis
methods. For this, we calculated the determinant of the corre-
lation matrix. Let X be our data matrix, and we obtained the
following:

det(corr(X)) = 0.0066

This value is close to zero, indicating that we can proceed and
apply the different multivariate statistical analysis techniques.
Then, the data was scaled using MinMaxScaler to normalize
it and ensure the proper performance of the dimensionality
reduction and clustering techniques addressed.

Once this preprocessing was completed, each of the studied
techniques was applied. We first reduced dimensionality and
then applied clustering. Subsequently, we evaluated the results

obtained using the metrics described earlier. The workflow
followed is illustrated in Fig. 1.

The implementation was carried out in Google Colab under
the Python programming language. PCA and SPCA were
utilized through the sklearn library, a widely used machine
learning framework. For RPCA and WPCA, we obtained
the implementations from two external repositories2,3 that
contained the respective algorithms.

III. RESULTS AND DISCUSSION

The results from Table IV reflect the effectiveness of
different dimensionality reduction methods, each in relation
to PCA, SPCA, RPCA (Robust PCA), and WPCA.

In the comparison between PCA and SPCA, an effectiveness
score of 0.1327 implies that PCA is more effective at retaining
variance than its sparse counterpart, SPCA. However, when
contrasted with RPCA, PCA shows a slightly lower effective-
ness score of -0.0582. This score suggests that RPCA retains
slightly more variance than PCA, demonstrating the potential
benefits of using RPCA in datasets with complex structures.

The analysis becomes more pronounced when PCA is
compared to WPCA, where the effectiveness score is found
to be -0.5620. This large negative value underscores the
superior capacity of WPCA in retaining variance relative to
PCA. The potential advantage of weighted PCA might be
attributed to its ability to account for variances differently
across different components, which proves beneficial in the
presence of heteroscedastic data.

Furthermore, when comparing SPCA and RPCA, an effec-
tiveness score of -0.1909 is found, denoting that RPCA holds
a slight edge in retaining more variance than SPCA. This
could be a result of RPCA’s ability to robustly handle outliers,
compared to the sparse nature of SPCA.

The comparison of SPCA to WPCA yields an effective-
ness score of -0.6947, suggesting that WPCA substantially
outperforms SPCA in terms of variance retention. The ability
of WPCA to assign differential weights to components likely
explains this performance differential.

Finally, when comparing RPCA to WPCA, the effectiveness
score is -0.5038, indicating that WPCA maintains a greater
amount of variance compared to RPCA. This further under-
scores the robustness of WPCA against other methods.

2https://github.com/dganguli/robust-pca
3https://pypi.org/project/wpca/
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Fig. 1: Schematic illustration of the workflow followed in this research.

TABLE IV: Results of effectiveness of dimensionality reduc-
tion methods.

Method Effectiveness

PCA relative to SPCA 0.1327
PCA relative to RPCA -0.0582
PCA relative to WPCA -0.5620
SPCA relative to RPCA -0.1909
SPCA relative to WPCA -0.6947
RPCA relative to WPCA -0.5038

Table V presents the results of clustering, specifically look-
ing at the mean variance of distance sample-centroid and the
mean distance among centroids.

For the combination of PCA and K-means clustering, the
mean variance of distance sample-centroid is 0.0347, and
the mean distance among centroids is 3.3733. The variance
value suggests a reasonable compactness within clusters, while
the larger mean distance implies good differentiation among
clusters.

The SPCA with K-means results show a mean variance
of distance sample-centroid of 0.0036, and a mean distance
among centroids of 3.0526. These results indicate excellent
compactness of clusters, as evidenced by the significantly
lower mean variance compared to PCA + K-means. The mean
distance among centroids, while slightly less than the PCA
+ K-means results, still indicates a respectable separation of
clusters.

The combination of RPCA with K-means exhibits the small-
est mean variance of distance sample-centroid, at 0.000843,
suggesting extremely tight clusters. However, the mean dis-
tance among centroids is dramatically lower than the previous
methods, at 0.3852. This indicates less differentiation among
clusters, which may signify a higher likelihood of misclassi-
fication between clusters.

Finally, the WPCA with K-means results provide a mean
variance of distance sample-centroid of 0.0193, and a mean
distance among centroids of 1.1493. The variance is notably
lower than PCA + K-means, suggesting better clustering.
However, the mean distance among centroids is also less,
indicating less separation among clusters compared to PCA
and SPCA with K-means.

Based on these metrics, SPCA + K-means appears to offer
the best balance of compactness within clusters (low variance
of distance sample-centroid) and good separation among clus-
ters (relatively high mean distance among centroids).

TABLE V: Results of clustering according to mean variance of
distance sample-centroid and mean distance among centroids.

Method Mean variance of dis-
tance sample-centroid

Mean distance
among centroids

PCA + Kmeans 0.0347 3.3733
SPCA + Kmeans 0.0036 3.0526
RPCA + K-means 0.000843 0.3852
WPCA + K-means 0.0193 1.1493

Table VI details the cluster assignments for each country
using four different dimensionality reduction techniques com-
bined with K-means clustering.

At a glance, the PCA, SPCA, and WPCA methods seem
to assign most countries to the same cluster, indicating that
these techniques might be identifying similar structures within
the data. However, the RPCA method appears to provide
more varied cluster assignments, suggesting that it might be
detecting different patterns or structures compared to the other
methods.

Moreover, to complement these initial observations and
provide a quantitative measure of the similarity between the
cluster assignments from each technique, Fig. 2 presents the
rand index (RI) comparisons for our dimensionality reduction
techniques studied, each paired with the K-means clustering
algorithm.

The results indicate a high degree of similarity in the
clustering outcomes between PCA, SPCA, and WPCA, as
evidenced by RI values of 1.0. This suggests these methods
identify similar cluster structures within the data. However,
when these methods are compared with RPCA, the RI drops
to 0.51. This consistent decrease in RI suggests that RPCA
is identifying different clustering structures compared to the
other methods.

A possible explanation for this could be the robustness of
RPCA to noisy data and outliers. This suggests that the other
methods might not be capturing certain features of the dataset
that RPCA is able to identify.



TABLE VI: Clusters assignment of each method.

Country PCA+K-
means

SPCA+K-
means

RPCA+K-
means

WPCA+K-
means

Argentina 2 1 2 0
Australia 0 0 1 2
Brazil 0 0 1 2
Canada 0 0 1 2
China 1 2 0 1
European Union 1 2 2 1
France 0 0 2 2
Germany 0 0 1 2
India 0 0 2 2
Indonesia 0 0 1 2
Italy 0 0 2 2
Japan 0 0 1 2
Mexico 0 0 1 2
Netherlands 0 0 2 2
Russia 0 0 0 2
Saudi Arabia 0 0 1 2
Singapore 0 0 2 2
South Africa 0 0 0 2
South Korea 0 0 1 2
Spain 0 0 2 2
Switzerland 0 0 1 2
Turkey 2 1 2 0
United Kingdom 0 0 2 2
United States 1 2 0 1

In summary, these results suggest that while PCA, SPCA,
and WPCA all provide similar clustering results when used in
conjunction with K-means, RPCA tends to produce different
results. This discrepancy might be due to the unique features
of RPCA, particularly its robustness to outliers, which may
cause it to identify different data structures.

Fig. 2: Comparison of clustering methods using rand index

Finally Fig. 3 graphically shows the results of the clusters
generated by the techniques under study. The results are shown
as a scatter plot, with each point representing a country in the

original data set. The colors of the points represent the cluster
that each data point was assigned to by K-Means.

The first observation is that the PCA+K-Means plot exhibits
a clear separation of clusters, which is a testament to PCA
being a linear dimensionality reduction technique. It identifies
the principal components that account for the most variance
in the data, thereby facilitating the clustering process for K-
Means.

In the case of the SPCA+K-Means plot, the separation
between the clusters is discernible, but slightly smaller than
the PCA+K-Means plot. SPCA, as a sparse PCA technique,
denoises the data which can add complexity to the clustering
process performed by K-Means. However, it enhances the
interpretability of the clusters.

Contrarily, the RPCA+K-Means plot exhibits the least sepa-
ration between clusters. This could be attributed to the fact that
RPCA, as a robust PCA technique, focuses on outlier removal.
While this might add difficulty to the clustering process, it
improves the robustness of the clusters against noise. This
technique also demonstrates the most dispersion among the
clusters, implying greater variability within each cluster.

The WPCA+K-Means plot, however, manifests the most
clear-cut separation between clusters. This is due to WPCA’s
nature as a weighted PCA technique, assigning different
weights to various features in the data. Although this can com-
plicate the K-Means clustering, carefully chosen weights can
enhance the interpretability of the clusters. Interestingly, this
plot shows the least dispersion among the clusters, suggesting
a more compact, tightly grouped cluster structure.

Considering the dispersion, WPCA+K-Means clustering il-
lustrates the least dispersion, indicating tighter, more homo-
geneous clusters. This can be particularly advantageous when
greater intra-cluster similarity is needed.

Conversely, RPCA+K-Means presents the most dispersion,
reflecting higher variability within clusters, possibly due to
its robustness to outliers. PCA+K-Means and SPCA+K-Means
exhibit similar dispersion levels, both sitting between RPCA
and WPCA. These differences in dispersion offer valuable in-
sights into the inherent variability within each cluster produced
by the different dimensionality reduction techniques.

IV. CONCLUSIONS AND FUTURE WORKS

In this work, we embarked on a comparative exploration of
several dimensionality reduction techniques, namely, Principal
Component Analysis (PCA), Sparse PCA (SPCA), Robust
PCA (RPCA), and Weighted PCA (WPCA). Utilizing a dataset
of economic indicators from G20 member countries, we
employed these techniques to transform the high-dimensional
data into a more manageable format conducive to clustering
analysis.

We evaluated the effectiveness of each dimensionality re-
duction method based on their ability to retain the inherent
variance in the data. Subsequently, the reduced-dimensionality
data was subjected to K-means clustering, with the resulting
clusters assessed through metrics such as mean variance of
distance sample-centroid and mean distance among centroids.



(a) PCA+K-means (b) SPCA+K-means

(c) RPCA+K-means (d) WPCA+K-means

Fig. 3: Visualization of the clusters generated by each of the studied techniques.

The clustering assignments for each dimensionality reduction
method were further compared and quantified using the rand
index.

Our analysis revealed WPCA as the most effective technique
for variance retention, a finding that could be attributed to
its differential weighting of components. Despite this, the
results also illuminated that a higher variance retention does
not necessarily equate to superior clustering performance.
In this regard, SPCA combined with K-means emerged as
the most balanced approach, offering excellent compactness
within clusters and commendable separation among clusters.

While there was substantial consistency in clustering as-
signments from PCA, SPCA, and WPCA, the clusters derived
from RPCA were more diverse, hinting at its ability to uncover
unique patterns within the data.

These insights underline the importance of methodological
selection tailored to the data and analysis objectives, shedding
light on the varied and context-specific strengths of each
dimensionality reduction technique.

Overall, this work contributes to the evolving landscape
of dimensionality reduction techniques and their application
in data analysis, providing a foundational reference point
for researchers and practitioners navigating high-dimensional
datasets. Through continued refinement of these methods and

broadened understanding of their strengths and limitations, the
power and utility of dimensionality reduction can be enhanced
in diverse real-world contexts.

Looking ahead, future research could extend the present
findings by applying these dimensionality reduction methods
to different datasets, enabling a deeper understanding of their
applicability and generalizability. Exploration of other clus-
tering algorithms paired with these techniques could further
enrich the discourse on the compatibility and performance of
different method combinations. Furthermore, comprehensive
studies into the computational efficiencies of these methods
will be instrumental as data volumes continue to grow.
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