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Abstract—Atrial fibrillation (AF) is the most common 

cardiac arrhythmia affecting about 50,000 new people each year 

in Latin America. AF is characterized by irregular and rapid 

heartbeats that can lead to serious complications, such as stroke, 

heart failure, and all-cause mortality. Traditional methods for 

AF detection are time consuming and can be prone to human 

error. Therefore, this work reports the results from two 

methods using machine learning techniques to assist the 

diagnosis of AF through 2 hybrid models of neural networks: 

The 1D- CNN with BILSTM model and the MobileNetV2 with 

BILSTM model which reached 81 and 75% accuracy 

respectively. 

Keywords— Atrial fibrillation detection, AF diagnosis, AF 

detection with ML  

I. INTRODUCTION  

Atrial fibrillation (Afib or AF) is a type of irregular heart 
rhythm (arrhythmia). Arrhythmias are due to alterations in the 
electrical signal of the heart, being the most common cardiac 
arrhythmia affecting about 50,000 new people each year in 
Latin America, a region where it is among the 4 most common 
cardiovascular diseases [1]. The occurrence of AF increases 
with age, with prevalence ranging from 0.5% of 50-year-olds 
to almost 10% of the octogenarian population [2]. 
Furthermore, AF is characterized by irregular and rapid 
heartbeats that can lead to serious complications, such as 
stroke, heart failure, and all-cause mortality. A high incidence 
of AF is also observed in patients who have undergone a 
pulmonary vein isolation procedure. Therefore, detection of 
atrial fibrillation is an important task in the healthcare setting, 
as it allows early diagnosis and treatment, which can prevent 
or reduce the risk of complications such as stroke and heart 
failure, and improve the quality of life of those affected [3]. 

 Traditional methods for AF detection, such as manual 
analysis of electrocardiogram (ECG) signals, are time 
consuming and can be prone to human error. Currently, there 
are several challenges in the field of atrial fibrillation (AF) 

detection as the demand for efficient health monitoring is 
increasing [4]. One of the main challenges is the detection of 
asymptomatic AF, which is AF that does not produce any 
symptoms. Asymptomatic AF is common and is often 
discovered only when a patient is tested for another condition 
[5]. Thus, one of the greatest challenges in detecting AF is 
paroxysmal AF (pAF), which accounts for approximately 
30% of all patients with AF. AFpF is known to evade standard 
ECG recording and using 24-48 hour Holter ECGs can 
identify AFpF in 2-5% [6]. Despite prolonged ECG 
recordings and continuous hourly monitoring, AFpF is more 
likely to go undetected [7]. This hinders early detection and 
increases the risk of complications [4,5,6,7].   

Another challenge is the high rate of false positives and 
false negatives in AF detection where manual analysis of 
electrocardiogram (ECG) signals, can be prone to human error 
and may not be able to detect AF accurately [3]. This can lead 
to missed diagnoses and unnecessary treatments. Also, non-
ECG devices may give false positives as is the case with the 
Microlife WatchBP Home A device. Microlife identified AF 
in 58/72 AF patients and produced a false positive result in 79 
patients in the AF arrest study involving 5969 patients with 
hypertension, diabetes mellitus, and/or aged 65 years or older 
where the corresponding sensitivity and specificity for AF 
detection were 80.6% [8]. Another large study of atrial 
fibrillation detection involved 1013 patients with 
hypertension, diabetes mellitus, and/or aged 65 years or older. 
Smartphone-based photoplethysmography was performed 
with the Cardiio Rhythm smartphone app. The app identified 
atrial fibrillation in 26/28 patients with atrial fibrillation and 
produced 23 false-positive results as the device had a 
sensitivity of 93% and specificity of 98% [9]. Although there 
are already several methods for the detection of AF, the daily 
challenge for researchers is to reach accurate detections, 
avoiding false negatives and positives because it could cause 
a specialist to misdiagnose and affect the patient. 



In recent years, the field has shifted towards the use of 
machine learning techniques, in particular neural networks. 
Neural networks are a type of machine-learning model 
inspired by the structure and function of the human brain [10]. 
Neural networks, being a powerful machine learning 
technique, have shown great potential in various medical 
applications, such as image analysis, natural language 
processing, and signal processing [11]. In the healthcare field, 
neural networks have been used to analyze medical images, 
such as X-rays, CT scans, and MRI scans, to detect diseases 
such as cancer, lung disease, and heart disease [12]. They have 
also been used to process and analyze large amounts of 
medical data, such as electronic health records and genomic 
data, to improve patient outcomes [10,11,12]. 

In the field of medical signal processing, neural networks 
have been used to process and analyze various signals, such as 
ECG, EEG, and EMG signals, to detect diseases such as atrial 
fibrillation, seizures, and muscle disorders [13]. The ability of 
neural networks to learn complex patterns in data and achieve 
high throughput makes them a promising approach for AF 
detection. Thus, for automatic AF arrest with convolutional 
neural networks, they have relied mainly on two main features 
of AF in the ECG: (1) the absence of P waves (replaced by a 
series of low-amplitude oscillations called fibrillations) and 
(2) irregular RR intervals. In the presence of noise, AF 
detection algorithms that rely solely on the absence of P waves 
perform poorly because P waves are contaminated by noise 
and deviations from the signal baseline [10]. In this way, 
neural networks can be trained with large amounts of data and 
can automatically learn the features that are relevant for AF 
detection. This makes them a powerful tool for detecting AF, 
especially compared to traditional methods, such as manual 
analysis of ECG signals, which can be time-consuming and 
prone to human error [10,12,13]. 

There are several different types of neural network 
architectures that have been used in atrial fibrillation (AF) 
detection as can be seen in Table 1 which lists the different 
types of models developed for automatic AF detection. One of 
the most popular architectures includes: Feedforward Neural 
Networks (FFNN), which are a type of neural network 
architecture that uses supervised training with the back-
propagation error algorithm and layers of interconnected 
nodes to classify ECG signals as normal or abnormal [14]. The 
study by Kumar et al. [15] used single-lead ECG recordings 
and a feature selection process to classify the recordings into 
4 groups: Normal (N), Atrial Fibrillation (AF), Other rhythms 
(O), and noisy (~). The final model achieved a high robustness 
with an F1 score of 76% on the training data and 77% on the 
test data, indicating that the model did not overfit.  

As for Convolutional Neural Networks (CNN) they are a 
type of neural network that is designed to process data that has 
a grid-like structure, such as an image or a signal. They consist 
of convolutional layers that extract features from the input 
data and fully connected layers that are used for classification. 
CNNs have been used to classify ECG signals as normal or 
abnormal and also to extract features from the signals [16]. 
For example, Hsieh et al. [17] proposed a CNN-based 
algorithm for AF detection that increases detection accuracy 
and reduces network complexity. The algorithm achieved an 
average F1 score of 78.2%, which is better compared to 
existing deep learning-based methods.  

Another widely used neural network is the Recurrent 
Neural Network (RNN) which is a type of neural network that 

is designed to process sequential data, such as time series data. 
They have a feedback loop that allows them to maintain an 
internal state and model temporal dependencies in the data. 
RNNs have been used to classify ECG signals as normal or 
abnormal and also to model temporal dependencies in the 
signals [18]. For example, Shashikumar et al. [7] presented an 
attention-based deep learning framework for detection of 
paroxysmal AF episodes from a sequence of windows, where 
a deep convolutional neural network was used for image-
based feature extraction and a bidirectional recurrent neural 
network with an attention layer was used for AF detection. 
The algorithm achieved an ACC of 94% on the test set and 
96% on the training data, which outperforms benchmark 
models.  

A type of RNNs that have been specifically designed to 
handle the problem of long-term dependencies in sequential 
data. LSTMs have been used to classify ECG signals as 
normal or abnormal and also to model the temporal 
dependencies of signals [19]. Faust et al. [20] used an LSTM-
based deep learning system to detect AF beats in heart rate 
signals with the aim of reducing physician workload and 
enabling long-term monitoring. The system obtained an 
accuracy of 98.51 % with 10-fold cross-validation and 99.77% 
blinded, indicating good robustness. In contrast, Closed 
Recurrent Unit Networks (GRU) is an improved version of 
Long-term Memory Network (LSTM) and has a simpler 
structure and requires less computation.  According to Thampi 
et al. [21] GRU is used to detect atrial fibrillation (AF) in 
electrocardiogram traces.  

TABLE I.  BENCHMARK PAPER ABOUT ATRIAL FIBRILLATION 

DETECTION 

Classifier Characteristics 
Training 

Accuracy 

Validation 

Accuracy 
Ref 

FFNN 
One hidden layer 

with 128 units and 

200 epochs. 
76% 77%  [15] 

1D-CNN 

10 convolutional 

blocks, 2 fully 
connected layers, 

Softmax layer as the 

output prediction. 

Not 

mentioned 
78.2%  [17] 

Attention-
based 

BRNN 

5 layer CNNs, 
BRNN, attention 

model and softmax 

regression. 

96% 94%  [7] 

LTMS 

Fully connected 

layers, global max 

pooling layer and 

bidirectional LTMS 

layers. 

Not 

mentioned 
98.51%  [20] 

GRU 

100 epochs, 64 

memory blocks and 
hidden GRU layer 

and dense layer with 

sigmoid activation 

function. 

Not 

mentioned 
100%  [21] 

CNN-
LSTM 

3 convolutional 

blocks with max-

pooling layers, 
LSTM layer. 

Not 
mentioned 

97.87%  [22] 

Mobilenet

V2-

BiLSTM 

MobilenetV2 has 16 

interconnected 

blocks with BiLSTM 
added layers. 

Not 

mentioned 
86.21%  [23] 

 



The study uses deep learning methods to detect AF in real 
time. The results indicate that GRU offers accuracy of 100%, 
and no preprocessing, denoising, or filtering methods are 
required [21]. Furthermore, Neural network architectures can 
be combined and adjusted to improve model performance. For 
example, Petmezas et al. [22] proposed a hybrid DL model 
that combines CNN and LSTM to classify different types of 
cardiovascular arrhythmias. The model uses the CNN as a 
feature extractor to supply the LSTM with the most 
discriminative features of the input and achieve 
dimensionality reduction. It also uses the focal loss function 
for prediction error reduction and data imbalance handling. 
The model was trained on the MIT-BIH Atrial Fibrillation 
Database and achieved a sensitivity of 97.87% and specificity 
of 99.29% using a ten-fold cross-validation strategy. 

The use of neural networks for atrial fibrillation (AF) 
detection has shown promising results, but it is important to 
evaluate different architectures to determine the most effective 
approach. Different architectures such as feedforward neural 
networks, convolutional neural networks, and recurrent neural 
networks, may have different strengths and weaknesses with 
regard to AF detection. In this context, the present study aims 
to compare the performance of different neural network 
architectures for AF detection and identify the best approach 
for this task. This pursuit is crucial to establish whether these 
novel models outperform or are at least comparable to cutting-
edge techniques. Specifically, this study will evaluate the 
performance of two hybrid neural networks of CNN-BiLSTM 
and MobileNetV2 in terms of accuracy and sensitivity, 
generalization capabilities, and computational cost. 
Additionally, the selection of the CNN-BiLSTM architecture 
is grounded in the well-established notion that both BiLSTM 
and CNN networks exhibit exceptional precision. This hybrid 
approach is expected to facilitate an intricate exploration of 
local and global features within AF data, thereby potentially 
elevating accuracy and sensitivity in AF detection.  

This study originates from the concern to evaluate the 
performance of neural networks in two distinct contexts: one 
in which signal data is presented in its numerical format for 
1D-CNN model and another in which the model 
(MobileNetV2) operates using this data in image format. The 
primary objective is to determine whether this variation in 
input formats, and consequently, in the models employed, has 
any significant impact on the diagnosis of atrial fibrillation 
(AF). Furthermore, it is noteworthy to emphasize that in the 
current era, the widespread availability of smart mobile 
devices may enable them to serve as accessible means for 
obtaining images of ECG signals. Consequently, it is 
imperative to assess these differences, given the increasing 
proliferation of these devices as potential tools in the field of 
medical diagnosis. By providing a comprehensive comparison 
of these neural network architectures, this study will 
contribute to the advancement of research in AF detection 
using machine learning techniques. 

II. MATERIALS AND METHODOLOGY  

The proposed algorithm aims to solve a problem of binary 

classification, where the input is an ECG recording of a 

patient and the output will announce if the patient has atrial 

fibrillation or if it is apparently healthy. 

A. Dataset 

We trained the 1D-CNN algorithm using the "MIT-BIH 
Physionet ECG Dataset (2017 competition version)" which 

contains 8528 ECG recordings ranging from 9 to 60 seconds. 
The dataset was provided by the AliveCor device for the 2017 
PhysioNet/CinC Challenge. It is important to mention that the 
data is band-pass filtered by the same device. We also used the 
"Autonomic Aging" database to obtain ECG signals from 
healthy patients. All dataset contains both a .mat file and a .hea 
file. The .mat file includes the ECG data while the .hea file 
contains information about the waveform [24]. More details 
on the training set can be found in Table 2.  

TABLE II.  DATA PROFILE FOR THE TRAINING SET 

 

Type 

 

# 

Recording 

 

Time length (s) 

  Mean SD Max Median Min 

Normal 5154 31.9 10.0 61.0 30 9.0 

AF 771 31.6 12.5 60 30 10.0 

Other 
rhythm 

2557 34.1 11.8 60.9 30 9.1 

Noisy 46 27.1 9.0 60 30 10.2 

Total 8528 32.5 10.9 61.0 30 9.0 

 

B. Signal Preprocessing 

Signal preprocessing is essential before applying Machine 
Learning techniques since the raw data contains alterations 
that need to be "cleaned" or corrected to facilitate further 
processing (Fig 1). Therefore, with this methodology the 
training of the data is accelerated, as well as the percentage of 
accuracy in the results is increased [25]. In the present work, 
3 signal preprocessing techniques are applied: ECG 
Normalization, ECG Length Segmentation and Denoise 
Filtering.  

In addition, to train the hybrid MobileNetv2 and BiLSTM 
model, images of each segmented signal were manually 
generated to create a new database of 260 training images, 94 
validation images, and 62 test images. 

a) ECG Normalization 

Both databases vary in their total amplitude, therefore the 

amplitude (y axis) will be normalized to the same standard 

value to facilitate the subsequent treatment of the data in the 

neural networks. Normalizing the amplitude is also a good 

technique to avoid the offset effect [26].  

b) ECG Length Segmentation  

Due to the high variation of the length of both databases, 

we are developing an ECG Length Segmentation algorithm 

to cut all the data in the same length (x axis). We established 

a data length of 30 seconds. Furthermore, thanks to this 

algorithm, more signal segments can be generated to improve 

network training, as Hsieh and colleagues did in their work 

[27]. 

c) Denoise Filtering  

It is always recommended to process the signals with 

filters to eliminate the alterations that can be generated by 

baseline wander, myoelectric noises, breathing sounds, 

motion artifact and powerline interferences [28,29,30]. 

Removing the noise before training the neural networks is a 

crucial step as it allows to improve the signal-to-noise ratio 

[31], as well as obtain efficient models with reliable results. 

We applied a wavelet transform which can be thought of 

as a bandpass filter, since we will analyze non-stationary 

signals such as ECG recordings [32]. This filter helps to 



decompose the ECG signal to analyze it in different 

frequency bands through 2 low-pass filters and 2 high-pass 

filters [33-34]. Lyakhov et al. [35] mention that, by using this 

filter, noise can be efficiently removed and the most 

important features of the signal can be extracted. 

 

 

 

 

 

 

Fig. 1. ECG signal preprocessing. 

C. Sensitivity and Specificity Test 

The confusion matrix is a method in machine learning that 

helps measure recall, precision, accuracy, and AUC-ROC 

curve. It is used to allocate predictions to the original data 

classes and evaluate classification performance [36]. We 

calculated the sensitivity and specificity of each pacing class 

at different binary decision thresholds. The dataset consisted 

of 8258 records, with 70-80% of the data used for training the 

model and the remaining 15-30% used for validation at the 

end of each epoch. After training, we evaluated the algorithm 

on 1279 test records and constructed a confusion matrix to 

summarize the model's performance [37]. 

D. Deep Learning Algorithms  

The machine learning algorithms selected to develop this 

problem of classification are 2 hybrid models. The first is a 

combination of 1d- CNN and BiLSTM algorithms and the 

second is a model with MobileNetV2 and BiLSTM 

assembled algorithms. 

a) Hibrid Model: 1D-CNN and BILSTM 

The 1D-CNN integrates in its algorithm 4 convolutional 
layers with other normalization, max pooling and dropout 
layers [38] that manage a relevant feature extraction from 
ECG signals (Fig 2). 

On the other hand, the second neural network integrated in 
this model is a RNN. RNNs are a great work tool when the 
task is about processing time series [39]. Specifically, in this 
first model we incorporate the Bidirectional Long-Short Term 
Memory (BiLSTM) neural network which is used in cases 
when the data provided is highly variable over time [38,40], 
this particularity makes it ideal for working with ECG signals. 
It is characterized by having a forward transmission layer and 
a backward transmission layer that transports information 
from the future to the past and from the past to the future, 
which facilitates the classification task in the neural network 
[41] and also solves the problem of long-term dependency 
[42]. In addition, its algorithm incorporates a forget gate 
function with which it avoids losing information of our 
interest. 

In summary, the 1D-CNN efficiently extracts features 
while maintaining their dimensionality, while the BiLSTM 
predicts classification without dimensionality issues. 
Together, they create a balanced model that complements 
each other's characteristics. 

 

 

Fig. 2. CNN-BILSTM System Architecture. 

b) Hybrid Model: MOBILENETV2 and BILSTM 

The MobileNetV2 network is commonly integrated into 

mobile devices [43] since it is characterized by occupying 

fewer resources and generating higher performance than 

other heavier networks [23]. The architecture of this network 

is described in Fig 3. 

 

 

Fig. 3. MobilenetV2-BiLSTM system architecture. 

MobilenetV2-BiLSTM is characterized by incorporating 

depthwise and pointwise convolution blocks for feature 

extraction that helps to reduce the number of parameters of 

the network, also it has a bottleneck algorithm in its 

architecture that reduces inefficient data loss [44] and it also 

has 1x1 convolutions that, being so small, occupy fewer 

resources.  

Together with the aforementioned BiLSTM network, 

also described in Fig 3, will work to extract the most 

important characteristics of the signal and to give a reliable 

diagnosis.  

III. RESULTS 

The training process yielded high accuracy for all cases. 

For the first CNN-BiLSTM-based model, after 50 epochs of 

training on the 3 classes, the validation set achieved an 

accuracy of 81% (Fig 4). The categorical cross-entropy 

function was used to calculate the loss, which was 0.385 for 

the validation set.  

Fig. 4. Validation accuracy vs epochs. 

Then, the confusion matrix for the validation set is shown 

in Fig 5, since that model was proposed for 3 classes using 

the test data for the validation set. The CNN-BiLSTM 

Database Amplitude 
normalization 

Length 

segmentation 

Wavelet 

transform 
Median 

filtering 

Cleaned 

data 



network correctly classified 1279 out of 8258 fragments 

belonging to the 3 classes during the test phase, resulting in 

an overall accuracy of 81%. In terms of individual cardiac 

arrhythmia diagnostic classes (aFib, Normal, and Other), the 

recognition system provided a classification accuracy of 75% 

or higher for all. While the predicted values are always 

between 0 and 1, we observed that all correct predictions are 

on the diagonal of the matrix, with accuracy greater than 75% 

for each class. Any values outside the diagonal represent 

incorrect predictions.  

Fig. 5. Confusion matrix for test set. 

On the other hand, the results obtained from training the 

signal images with the hybrid MobileNetV2-BiLSTM model 

are illustrated in Fig 6.  

 

Fig. 6. Training and validation accuracy of MobilenetV2-BiLSTM. 

Figures 6 and 7 reveals that, at the beginning, the loss is 

relatively high and accuracy is around 50%. As training 

progresses, there is some fluctuation in both loss and 

accuracy. Toward the end of the training, the loss starts to 

decrease and accuracy improves. These results indicate that 

the model was able to learn and adapt to the patterns present 

in the training data.  However, it is essential to highlight that 

these improvements were not consistently linear. 

Additionally, fluctuation in validation accuracy is shown in 

figure 6. These fluctuations can occur because the model is 

too complex relative to the available data, which may lead to 

overfitting and, consequently, fluctuations in validation 

accuracy. Later, after 30 epochs, the accuracy values of the 

training and validation set were 69% and 65% respectively. 

In addition, the results of training and validation loss are 

shown in Fig 7., specifically, training loss started at 

approximately 0.6979 in the first epoch and gradually 

decreased over subsequent epochs. By the end of training, the 

training loss reached a value of approximately 0.5895. On the 

other hand, the initial validation loss was around 0.6967 and 

also experienced fluctuations in subsequent epochs. At the 

end of training, the validation loss stabilized at approximately 

0.6282. 

 

Fig. 7. Training and validation loss of MobilenetV2-BiLSTM. 

In general, the training loss demonstrated that the model 

learned from the training data, as indicated by the decreasing 

trend. While the model performed reasonably well on the 

training data, it did not consistently generalize effectively to 

unseen data. The validation loss fluctuations may signify 

overfitting or model instability. 

Figure 8 shows the normalized confusion matrix. 

 

 

Fig. 8. Normalized confusion matrix of MobilenetV2-BiLSTM 

Results revealed in Fig 8 highlights that the relatively 

high true positive rate (0.65) indicates that the model has a 

reasonable ability to correctly identify cases of atrial 

fibrillation, which is crucial for accurate diagnosis and timely 

intervention. 

The true negative rate (0.35) shows that the model is 

effective at correctly identifying cases without atrial 

fibrillation, contributing to reducing unnecessary concerns or 

treatments for individuals who do not have the condition. 

The false negative rate (0.42) is a concern as it suggests 

that the model occasionally misses cases of atrial fibrillation. 

This could potentially result in underdiagnosis and delayed 

treatment for patients who need it.  

Finally, the false positive rate (0.58) indicates that the 

model sometimes incorrectly predicts atrial fibrillation in 

cases where it is not present. While this may lead to additional 

testing or treatment for some patients, it is generally safer to 

have a higher false positive rate than a high false negative rate 

in a medical diagnosis context. 



IV. DISCUSSION 

TABLE III.  COMPARISON RESULTS OF THE HYBRID MODELS  

Model Epochs 
Total 

data 
Acc Sen Spec 

1D-CNN 

and BiLSTM 
50 

8528 

recordings 
81% 82% 79% 

MobilenetV2 
and BiLSTM 

30 
416 

images 
65-
69% 

61% 38% 

 

In Table 3 it is illustrated that the CNN-BiLSTM-based 

model achieved high accuracy of 81% on the validation set, 

which indicates that the patterns were learned well without 

overfitting [16]. The categorical cross-entropy function was 

used to calculate the loss, which was 0.385 for the validation 

set. Additionally, a confusion matrix was constructed for the 

validation set, which showed that the model correctly 

classified 1279 out of 8258 fragments belonging to the 3 

classes during the test phase, resulting in an overall accuracy 

of 81%. 

Furthermore, the confusion matrix shown in figure 6 also 

revealed that the recognition system provided a classification 

accuracy of 75% or higher for all individual cardiac 

arrhythmia diagnostic classes (aFib, Normal, and Other). The 

diagonal of the confusion matrix showed all correct 

predictions, with accuracy greater than 75% for each class, 

while values outside the diagonal represented incorrect 

predictions. These results demonstrate the effectiveness of 

the CNN-BiLSTM-based model for accurate classification of 

cardiac arrhythmia diagnostic classes. 

Comparatively, our findings on the metrics shown in table 

3 about the Mobilenetv2-BiLSTM model showed contrasting 

results compared to Model 1. This model was trained for 30 

epochs, using a much smaller data set, consisting of only 416 

images. This represented a significant challenge in terms of 

the amount of data available for training. Moreover, although 

the accuracy ranged from 65% to 69%, the sensitivity value 

(Sen) was 61%, indicating that the model had difficulty in 

accurately identifying PA cases. This could be due to data 

limitation and image complexity compared to the 1D signal 

recordings used in Model 1. On the other hand, the specificity 

(Spec) was 38%, suggesting a high number of false positives, 

which could be due to the difficulty of the model in 

discerning between AF and non-AF cases in the images. 

V. CONCLUSION  

To sum up, the utilization of CNN-BiLSTM machine 

learning algorithms for classification tasks can deliver precise 

outcomes if trained and verified properly. The presented 

investigation indicates that the proposed model obtained an 

81% overall accuracy and a 75% or higher classification 

accuracy for each of the three diagnostic classes. These 

outcomes imply that the CNN-BiLSTM-based model could 

be a valuable instrument for accurately categorizing cardiac 

arrhythmias. Nonetheless, additional research and validation 

are required to determine the universality and usefulness of 

this model in clinical environments. 

Similarly, model 2, which used MobileNetV2 images, 

experienced difficulties compared to Model 1. With a smaller 

and more complex data set of 416 images, it obtained variable 

accuracy (between 65% and 69%) but performed poorly in 

terms of sensitivity (61%) and specificity (38%). This 

suggests that image processing for AF detection can be 

challenging, especially when there is limited access to 

training data.  

To further enhance the performance of the models, future 

work could include hyperparameter tuning to explore the 

effect of different parameters and features on the accuracy of 

the models. This analysis could provide insight into potential 

improvements or modifications to the existing models. 

Additionally, it would be beneficial to evaluate the 

performance of the models on a larger and more diverse 

dataset to determine their generalizability in clinical settings. 

Furthermore, an important area for future research would be 

to investigate the feasibility of implementing the models in 

real-time monitoring of atrial fibrillation, which remains a 

challenging task.  
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